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Abstract
The mechanism of introducing non-Hermiticity to non-central PT -symmetric
potentials through both the ϕ azimuth and θ polar angles is discussed.
Generalizing the results of a previous work it is shown that this can be done
also through the polar angle part if appropriate potentials, such as the Scarf I
or Rosen–Morse I potentials are used in the eigenvalue equation of the polar
component. It is shown that the spontaneous breakdown of PT symmetry
can also occur in these non-central potentials. Several potentials are proposed
in the azimuthal eigenvalue equation too, where the use of periodic boundary
conditions is essential. Possible generalizations of the results are outlined.

PACS numbers: 03.65.Ge, 02.30.Gp, 11.30.Er, 11.30.Qc

1. Introduction

The introduction of PT -symmetric quantum mechanics [1] initiated intensive studies both in
the field of non-Hermitian quantum Hamiltonians and in the classic area of exactly solvable
potentials. The renewed interest in non-Hermitian Hamiltonians started with the discussion of
unexpected results concerning manifestly complex potentials that had partly or fully real energy
spectrum and also eigenstates with indefinite norm. These Hamiltonians were characterized
by PT symmetry, i.e. invariance with respect to the simultaneous action of the P space and
T time inversion operations. It soon turned out that PT symmetry is neither necessary,
nor a sufficient condition for possessing real energy spectrum, and PT -symmetric quantum
mechanics has also recognized a special case of pseudo-Hermiticity [2]. Much effort has been
devoted to exploring the Hermitian connection of non-Hermitian theories, which have been
known earlier too under various names. A key element of this connection is the construction of
a positive definite metric operator that allows the restoration of the probabilistic interpretation
of these theories [3].
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Activity in the field of exactly solvable potentials had an impact from PT -symmetric
quantum mechanics when it turned out that much of the techniques applied to conventional
quantum potentials can be used in this area too. The PT -symmetric versions of real potentials
have been analysed from various viewpoints e.g. identifying exact solutions with real and
complex-energy eigenvalues in various potential classes [4–10] and discussing the transition
between the two domains i.e. the mechanism of the spontaneous breakdown of PT symmetry
[11, 12]; combining PT symmetry with supersymmetric [7, 13] and algebraic [14–16]
techniques; determining the normalization constants and pseudo-norm of PT -symmetric
potentials [12, 17, 18], etc.

Although most efforts concerned the study of the bound states of one-dimensional non-
relativistic problems, recently, various generalizations of this problem have been proposed,
and the investigation of systems with scattering solutions [15, 19], periodic structures [20],
coupled channels [21], more particles [22] and relativistic wave equations [23] has been
started. Relatively little effort has been paid to discussing PT -symmetric potentials in higher
dimensions [24–26]. In a recent systematic study we analysed the conditions under which
PT -symmetric two- and three-dimensional potentials can be constructed using the separation
of the variables in polar and radial parts [27]. Similar treatment of non-central real potentials
has been given already [28], however, the PT -symmetry requirement introduces a number of
new elements in the formalism. It turned out, for example, that the angular variables play an
important role in introducing imaginary potential components and complex-energy solutions in
the system. In [27] this was done using the azimuthal component of the non-central potential.
Here we generalize the formalism and demonstrate that with suitable choice of the angular
potentials, non-Hermiticity can enter through the polar angle component too, and this extends
the range of non-central PT -symmetric solvable potentials considerably.

The arrangement of the paper is as follows. In section 2 we introduce the formalism and
develop the strategy to obtain exact solutions of non-central PT -symmetric potentials in terms
of one-dimensional ones. In section 3 we propose the application of various potentials in the
angular eigenvalue equations, and in particular, that of the exactly solvable PT -symmetric
Scarf I and Rosen–Morse I potentials in the polar equation. Finally, we summarize the results
and present possible further generalizations in section 4.

2. PT -symmetric Hamiltonians in three dimensions

Let us consider the Schrödinger equation in three spatial dimensions and with constant mass(
p2

2m
+ V (r)

)
ψ(r) = − h̄2

2m
�ψ(r) + V (r)ψ(r) = Eψ(r). (1)

Using polar coordinates and choosing the units 2m = h̄ = 1 equation (1) takes the form

1

r2

∂

∂r

(
r2 ∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+

1

r2
cot θ

∂ψ

∂θ
+

1

r2 sin2 θ

∂2ψ

∂ϕ2
− V (r, θ, ϕ)ψ + Eψ = 0. (2)

Assuming that the separation of the variables is possible, we search for the solution as

ψ(r, θ, ϕ) = r−1φ(r) sin−1/2 ω(θ)τ(ϕ), (3)

where r ∈ [0,∞), θ ∈ [0, π ] and ϕ ∈ [0, 2π ]. Then (2) turns into

φ′′ωτ +
1

r2
φω′′τ +

1

r2 sin2 θ
φωτ ′′ −

(
V (r, θ, ϕ) − 1

4r2
− 1

4r2 sin2 θ
− E

)
φωτ = 0, (4)

where prime denotes the derivative with respect to the appropriate variable.
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Next let us assume that the ω(θ) and τ(ϕ) functions satisfy the following second-order
differential equations:

ω′′ = (P (θ) − p)ω, (5)

τ ′′ = (K(ϕ) − k)τ, (6)

where P(θ) and K(ϕ) are some functions of the respective angular variable, while p and k
are constants. These equations can be considered as one-dimensional Schrödinger equations
defined on a finite domain, however, they can be more general. In the Schrödinger equation
the quantum numbers of the energy eigenfunctions are expected to appear in the energy
eigenvalues only, while in the present case they might appear in the potential terms too (at
least in the case of (5), as we shall see later). Furthermore, the boundary conditions also have
to be specified for the present application. τ(ϕ) has to be defined with periodic boundary
conditions τ(0) = τ(2π) and τ ′(0) = τ ′(2π) on the domain ϕ ∈ [0, 2π ], while there is no
such requirement for ω(θ) on the domain θ ∈ [0, π ]. Furthermore, the usual requirement of
the vanishing of the bound-state wavefunctions at the boundaries is not prescribed here: the
solutions can take on finite value there, in which case they remain normalizable on their finite
domain of definition. Due to this finite size one may expect that the potential terms P(θ) and
K(ϕ) might be related to the infinite square well potential with various boundary conditions,
so the trend of the eigenvalues p and k may be expected to increase as a quadratic function of
the respective principal quantum number.

In the next step we define the non-central potential as

V (r, θ, ϕ) = V0(r) +
K(ϕ)

r2 sin2 θ
+

P(θ)

r2
+

1

r2 sin2 θ

(
1

4
− k

)
, (7)

where V0(r) is a spherical potential. Then a radial equation of the type

−φ′′ +

[
V0(r) +

1

r2

(
p − 1

4

)]
φ − Eφ = 0 (8)

is obtained for φ(r). This is formally identical with a radial Schrödinger equation in which
the l(l + 1) angular momentum term is replaced by p − 1/4, i.e. formally p = (l + 1/2)2.

Next we investigate under which conditions the Hamiltonian (1), and in particular, the
non-central potential (7) exhibits PT symmetry. For this first we observe that in spherical
polar coordinates the space reflection operator P that acts like P : r → −r can be factorized
into two angular terms

P = PθPϕ, (9)

Pθ θ = π − θ, (10)

Pϕϕ = ϕ + π. (11)

These angular P operators differ from the usual space reflection operator defined in one
dimension as Px = −x, so this is one more difference with respect to usual PT -symmetric
systems that has to be taken into account when dealing with PT -symmetric potentials in three
dimensions. Making use of (9), (10) and (11) the PT transform of (7) is

V (r, θ, ϕ) = V ∗(r, π − θ, ϕ + π) (12)

= V ∗
0 (r) +

K∗(ϕ + π)

r2 sin2 θ
+

P ∗(π − θ)

r2
+

1

r2 sin2 θ

(
1

4
− k∗

)
. (13)
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The general conditions for the PT symmetry of (13) are thus

V0(r) = V ∗
0 (r), (14)

P ∗(π − θ) = P(θ), (15)

K∗(ϕ + π) = K(ϕ), (16)

k∗ = k, (17)

so the centrally symmetric component of the potential has to be real, while the two angular
potentials have to exhibit a kind of PT symmetry themselves, furthermore, the eigenvalue of
the azimuthal equation (6) has to be real. Note that there are no conditions here regarding
the eigenvalue p of the polar equation (5). This might also be complex, in which case the
radial-like equation (8) has to be solved with formally complex-energy eigenvalues, which
may turn the corresponding energy eigenvalues E into complex. Since E are the eigenvalues
of the full Hamiltonian (1) too, this implies that the PT symmetry of the whole system is
spontaneously broken.

There are further conditions that have to be considered when solving such a problem: the
potential should not depend on the quantum numbers, so a reparametrization of the individual
potential terms might be necessary. This is especially so if the formally different angle-
dependent terms in (7) turn out to have similar functional form. This can happen for the last
two θ -dependent terms in (7). In this case condition (17) can be dropped.

The strategy of solving the Schrödinger equation with a PT -symmetric non-central
potential is the following:

• Solve the azimuthal equation (6) with periodic boundary conditions and check whether
the last two terms in (7) can be combined. This is possible if P(θ) in (5) has a term of
the type sin−2 θ . In order to have state independent potential, the quantum numbers from
(6) are allowed to appear through k.

• Make sure that the combined term is PT -symmetric and free from the principal quantum
numbers of the two eigenvalue equations (5) and (6).

• Substitute the eigenvalue p of (5) into (8) and solve it. Depending on whether p is real
or complex, the PT symmetry of the whole Hamiltonian will be intact or spontaneously
broken.

Before closing this section we briefly refer to a possible modification of the formalism
that leads to a more compact expression of the potential (7). Although it does not influence
the results significantly in general, it can be useful in certain situations. Let us modify (5)
such that we introduce in it a term that depends on the eigenvalue k of equation (6)

ω′′ = (P (θ) − p)ω ≡
(

P̃ (θ) +
k

sin2 θ
− p

)
ω. (18)

With this modification (7) is formally simplified to a form which does not contain the constant
k explicitly

V (r, θ, ϕ) = V0(r) +
K(ϕ)

r2 sin2 θ
+

P̃ (θ)

r2
+

1

4r2 sin2 θ
. (19)

The state independence of V (r, θ, ϕ) is thus achieved at the price of transferring k-dependence
into (18). However, when our objective is finding solvable potentials in three dimensions,
the closed solutions of (18) also have to be determined. Unfortunately, the range of exactly
solvable potentials containing a sin−2 θ term is rather limited. In fact, considering potentials
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that are non-singular within the θ ∈ (0, π) domain, it is restricted to the Scarf I and Rosen–
Morse I potentials (see, e.g., [4]). These examples will be discussed in the following section.

As a further aspect of this modification we note that prescribing the PT invariance of
V (r, θ, ϕ) leads to the (14) and (16) conditions and the P̃ ∗(π − θ) = P̃ (θ) requirement. This
is equivalent with the already established conditions, i.e. (15) and (17), of which the latter one
can be dropped if P(θ) is a potential that contains a sin−2 θ term. In summary, the modification
of the formalism by (18) has no effect on the results as long as we are interested in exactly
solvable PT -symmetric potentials in three dimensions.

3. Illustrations

Here we proceed following the strategy outlined at the end of the previous section and present
examples for various solvable PT -symmetric non-central potentials in three dimensions. We
consider only potentials that are state independent. The results concerning the solution of
the azimuthal equation (6) can also be used to generate solvable PT -symmetric non-central
potentials in two dimensions. We also comment on previous results mentioned in [27] and
discuss how they fit into the general scheme as special cases.

3.1. Solving the azimuthal equation (6)

The condition for the PT symmetry of this problem (16) is different from the usual conditions
applied in the case of one-dimensional PT -symmetric potentials, i.e. V ∗(−x) = V (x), so
some care should be taken in using previous results. Periodic boundary conditions are also
essential here, so in the simplest case periodic potentials can be considered. The example
presented in [17] demonstrates that the PT -symmetry requirement prescribes different
periodicity for the real and imaginary potential components in this case: these have to have
even and odd number of periods in the ϕ ∈ [0, 2π ] domain, respectively.

A natural choice could be the combination of imaginary step potentials on a ring [25, 26].
Due to the periodic boundary conditions the energy eigenvalues of these systems
asymptotically go to those of the infinite square well, but the number and arrangement of
the steps are also reflected in the local relative position of the levels. The solutions up to 20 or
so can be easily determined for these potentials by graphical and analytical methods. It was
also found that by increasing non-Hermiticity (i.e. the height of the steps), complex-energy
solutions appear at a certain point [26]. With the use of these potentials in (6) therefore at
least a finite set of the solutions of non-central three-dimensional PT -symmetric potentials
can be handled. It has to be noted that the potential in [25] does not obey (16), because it has
an even number of imaginary steps on the ring, nevertheless, the results are instructive to the
case considered here too.

Further possibility could be applying PT -symmetric arrangements of Dirac delta
potentials [20] or attempting to construct the Lamé-type potentials [29] with PT symmetry.

As an exactly solvable example one can also apply the PT -symmetric Scarf I [17] or
Rosen–Morse I [18] potentials, which are analytically solvable. Due to the requirement (16),
however, these potentials have to be defined in two (or even number of) separate domains on
the [0, 2π ] domain, with periodic boundary conditions. One problem with these potentials is
that they possess inverse-square-type singularity at the boundaries, which will thus separate the
segments from each other by an impenetrable wall. This can be avoided by using parameters
that result in a weakly attractive singularity at the boundaries, which would, in principle allow
communication between the individual segments. We do not consider these potentials here,
rather we apply them later on in the polar equation (5).

5



J. Phys. A: Math. Theor. 41 (2008) 244015 G Lévai

The simplest choice is applying the real infinite square well as a special PT -symmetric
azimuthal potential: with this choice K(ϕ) = 0 and the non-central potential depends only
on the polar angle θ , so technically this is the easiest way to illustrate the methods for
that component of the wavefunctions. The general solutions can be written in terms of the
exponential functions e±imϕ , but in order to construct τ(ϕ) functions that are the eigenfunctions
of the PϕT operator (see (11)) with unit eigenvalue, a special combination of them has to be
taken

τm(ϕ) = im

(2π)1/2
cos(mϕ). (20)

These wavefunctions are PT normalized as 〈τn|Pϕ|τm〉 = δnm(−1)m and the corresponding
energy eigenvalues are km = m2. Actually, this choice can also be obtained from the Scarf I
and Rosen–Morse I potentials discussed above if they are defined on the [0, 2π ] domain, with
vanishing real and imaginary terms.

3.2. Solving the polar equation (5)

In this case, the requirement of PT symmetry is simpler both because the operation (10)
can be interpreted as an ordinary space reflection and also because the boundary conditions
need not be periodic. In principle any solvable or other PT -symmetric potential defined
on a finite domain can be applied here, nevertheless, those containing a term of the type
sin−2 θ play a special role, because they allow the construction of non-central potentials that
do not depend on the quantum numbers, in particular on that originating from the azimuthal
equation (6). The simplest case is when P(θ) contains only this term: then the ω(τ) functions
are expressed in terms of associated Legendre functions [27], however, non-Hermiticity can
enter the potential only through the azimuthal equation (6) in this case. As a possible
generalization, one may consider the PT -symmetric Scarf I [17] or Rosen–Morse I [18]
potentials, which have an imaginary component too in addition to the sin−2 θ term. Combining
these potentials with the infinite real square well in the azimuthal equation, the angular
wavefunctions become PT -symmetric generalizations of the spherical harmonics.

3.2.1. P(θ) as the PT -symmetric Scarf I potential. Originally this potential was defined
[17] on the x ∈ [−π

2 , π
2

]
domain, so a shift of θ = x + π

2 is necessary first: this simply reverses
the sign of the odd imaginary term in the potential (or replaces α and β with each other) and
has no significant effect on the results. Then

P(θ) =
(

α2 + β2

2
− 1

4

)
1

sin2 θ
− α2 − β2

2

cos θ

sin2 θ
, (21)

and

pn =
(

n +
α + β + 1

2

)2

, (22)

while the bound-state solutions can be written in terms of Jacobi polynomials P
(α,β)
n (cos θ).

The actual form of (7) is now

V (r, θ, ϕ) = V0(r) +
1

r2 sin2 θ

(
α2 + β2

2
− km

)
+

K(ϕ)

r2 sin2 θ
− cos θ

r2 sin2 θ

α2 − β2

2
, (23)

where, in the second term one has to cancel the dependence on m by a parameter change

α2 + β2

2
− km ≡ A = const. real (24)
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Since this requirement makes α and β dependent on m and A, the m-independence of the third
term in (23) also has to be guaranteed as

α2 − β2 ≡ 2B = const. imaginary. (25)

From (24) and (25) it follows that

α2 = A + B + km (26)

β2 = A − B + km. (27)

In what follows we do not indicate the m-dependence of α and β explicitly, except when it is
essential.

PT symmetry requires now

K∗(ϕ + π) = K(ϕ), (28)

2A ≡ α2 + β2 − 2km = (α∗)2 + (β∗)2 − 2k∗
m ≡ 2A∗, (29)

2B ≡ α2 − β2 = −(α∗)2 + (β∗)2 ≡ −2B∗. (30)

Condition (30) is the same as in the usual one-dimensional case, while (29) is more general
due to the presence of km. If, however, km is real, then the same condition follows in this case
too: (α∗)2 = β2 [17]. (In the simplest case discussed in the previous subsection, K(ϕ) is the
infinite square well and km = m2, real.) From (22) it is seen that for α∗ = β and α∗ = −β the
eigenvalue p is real and complex, respectively.

The radial equation (8) becomes similar to an ordinary radial Schrödinger equation

−φ′′ +

(
V0(r) +

l(l + 1)

r2

)
φ − Eφ = 0, (31)

where l = lm,n = n + 1
2 (αm + βm). Depending on whether αm + βm is real or complex, the

energy eigenvalue E = Ejnm will also be real or complex. (Here j is reserved for the principal
quantum number labelling the solutions of (31).) V0(r) can be any real potential defined on the
positive r-axis: in the simplest case it can be the harmonic oscillator or the Coulomb potential,
in which case complete analytical solution is possible, but it can also be some quasi-exactly
[30] or numerically solvable potential.

3.2.2. P(θ) as the PT -symmetric Rosen–Morse I potential. The solutions of this potential
and its comparison with the PT -symmetric Scarf I potential have been discussed recently
[18]. A main difference with respect to this latter potential is that in the natural form of the
related eigenvalue equation the principal quantum number appears in one of the coordinate-
dependent terms, so a parameter transformation similar to that applied in the previous part has
to be performed in order to obtain the solutions [4, 31]. Since such a dependence will also
appear on the quantum number originating from the azimuthal equation, we start from the
original form of the eigenvalue equation. According to this

P(θ) =
(

n +
α + β

2

)(
n +

α + β

2
+ 1

)
1

sin2 θ
+ i

α2 − β2

2
cot θ (32)

and

pn =
(

α + β

2

)2

+

(
α − β

2

)2

, (33)

and the bound-state solutions are again written in terms of Jacobi polynomials P
(α,β)
n (−i cot θ).
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The corresponding non-central potential (7) is

V (r, θ, ϕ) = V0(r) +
1

r2 sin2 θ

[(
n +

α + β + 1

2

)2

− km

]
+

K(ϕ)

r2 sin2 θ
+

i

r2

α2 − β2

2
cot θ.

(34)

Now the second term depends both on n and m, so in order to make (34) state independent the
following parameter change has to be made(

n +
α + β + 1

2

)2

− km ≡ A = const. real (35)

α2 − β2 ≡ 2B = const. real. (36)

Equations (24) and (25) imply that

α = (A + km)1/2 − n − 1

2
+

B

2

(
(A + km)1/2 − n − 1

2

)−1

, (37)

β = (A + km)1/2 − n − 1

2
− B

2

(
(A + km)1/2 − n − 1

2

)−1

. (38)

This is formally similar to the results of [18] with the exception that instead of a constant
parameter there is an m-dependent one appearing here.

The PT -symmetry requirement implies

K∗(ϕ + π) = K(ϕ), (39)

A ≡
(

n +
α + β + 1

2

)2

− km =
(

n +
α∗ + β∗ + 1

2

)2

− k∗
m ≡ A∗, (40)

2B ≡ α2 − β2 = (α∗)2 − (β∗)2 ≡ 2B∗. (41)

These equations are again more general than in the usual case of the PT -symmetric Rosen–
Morse potential [18], but it turns out that for real km, α and β are also real, so

pn,m =
(

(A + km)1/2 − n − 1

2

)2

+
B2

4

(
(A + km)1/2 − n − 1

2

)−2

(42)

is also real. (This is the case if again, K(ϕ) is the infinite square well and km = m2.) However,
for complex values of km not only α and β, but pn,m will also become complex. This also
means that the nature of the energy eigenvalues of the radial equation (8) and thus those of the
whole system depend on whether the eigenvalues of the azimuthal equation (6), km are real or
complex. The central potential V0(r) in (8) can be chosen in the same way as before.

4. Summary and outlook

Non-central PT -symmetric quantum potentials have been analyzed in three dimensions by
separating the variables in spherical polar coordinates. The original problem was separated
into two angular and a radial eigenvalue problem, and the requirement of PT symmetry
was defined for these components separately. The role of the boundary conditions, and in
particular, that of the periodic boundary condition characterizing the azimuthal equation has

8
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been discussed. It was shown that although usual one-dimensional potentials can be used to
formulate the angular equations, some care has to be taken in adapting these systems to the
actual situation.

A three-step strategy was formulated to obtain the solution of these potentials. In the first
step the azimuthal equation is solved with periodic boundary conditions. The use of various
periodic PT -symmetric potentials has been proposed, including the arrangement of step and
Dirac delta potentials, as well as Lamé-type and some well known exactly solvable potentials.
The eigenvalue of the azimuthal equation then appears in one of the potential terms of the
polar equation, so the change of parameters is required to make the full potential (7) state
independent. For this the application of potentials containing the term sin2 θ is necessary. In
addition to the case of this symmetric real potential, the use of the PT -symmetric Scarf I and
Rosen–Morse I potentials has been proposed, as they may possess an imaginary component
too. If these potentials are combined with the infinite real square well in the azimuthal equation,
the angular component of the wavefunction will become a PT -symmetric generalization of
the spherical harmonics.

In the last step the eigenvalues of the polar equation appear in the radial equation formally
in a centrifugal-like term, and the solution of the radial equation supplies the energy eigenvalues
of the full non-central PT -symmetric potential too. It was shown that this mechanism can
lead to the spontaneous breakdown of PT symmetry if the centrifugal-like term in the radial
equation becomes complex. Completely analytical solutions can be derived using radial
potentials that are solvable in the conventional setting for arbitrary value of the orbital angular
momentum l, e.g. for the harmonic oscillator and Coulomb potentials. It is notable that in
one-dimensional PT -symmetric quantum mechanics the Coulomb potential can be discussed
only on trajectories outside the real x-axis, because otherwise the boundary conditions cannot
be enforced [4, 32].

After setting the general formalism, it seems worthwhile to continue the study of concrete
examples. With this, typical aspects of both one-dimensional PT -symmetric and multi-
dimensional Hermitian potentials could be investigated. These could include calculating the
pseudo-norm, analyzing the possible presence of quasi-parity, the identification of possible
degeneracy patterns and symmetry groups related to them, etc. Extending these studies to
pseudo-Hermitian systems in d > 1 also seems worthwhile.
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